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Abstract. A further development is described of an analytical approach to the problem of an
impurity electron (or hole) in a quantum well (QW) subject to electric and strong magnetic
external fields both directed perpendicular to the hetero-planes. Previous results for an impurity
centre at the edge of a QW are extended to the case in which the impurity is located at any
position in the QW. It is shown that, as in the edge case, the combined potential acting on the
electron (or hole) resembles that of a double quantum well. One effective well is formed by
the Coulomb potential and the QW boundary closest to the impurity. A second effective well is
formed by the electric field potential and the other boundary of the QW. Analytical expressions
for the energy levels of the impurity are obtained. When the levels associated with the two
effective QWs anti-cross, the impurity single QW can be treated as a resonant structure. The
explicit dependencies of the resonant splitting upon the width of the QW, the magnitudes of the
electric and magnetic fields and the position of the impurity centre are obtained. Estimates of the
expected splitting and frequency of the emitted radiation relevant to the inter-well oscillations
of the electron are made using typical values associated with GaAs QWs.

1. Introduction

During the last decade, the subject of resonant devices based on low-dimensional
heterostructures has been studied extensively both experimentally and theoretically. A
study of impurities in low-dimensional structures is important on at least two accounts:
in basic research and in their impact on the fundamental and applicable properties of the
heterostructures. Obtaining the wealth of experimental data has been possible on account
of the advances made in growth techniques and control by the development of molecular-
beam epitaxy (MBE) and metal–organic chemical vapour deposition (MOCVD) methods
of manufacturing particular structures. Much of the more recent work has concentrated on
a double-quantum-well (DQW) structure formed by two narrow-gap semiconductor layers
separated by a wide-gap barrier layer. Most of the interest is the resonant tunnelling between
the wells. Quantum Hall states, cyclotron resonance, magneto-plasmon excitations and
magneto- and electro-transport are all affected strongly by the resonance process. Resonant
inter-well oscillations lead to the emission of terahertz radiation from DQW structures. This
in turn provides the basis for high-frequency devices such as blue-light-emitting diodes and
laser diodes and also for multivalent logic applications in integrated circuits.

Resonance effects in a DQW structure are closely connected with the problem of
impurities in a single quantum well (SQW) in the presence of electric and magnetic fields.
However, the resonance condition for a real DQW requires accurate knowledge of values
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for the parameters associated with the well and barriers. This implies accurate control of
the MBE or MOCVD growth technique so that gradual changes in these parameters can
be incorporated. If the DQW is constructed from an impurity in a SQW together with an
applied electric field, the resonance condition can be provided by a gradual change in the
magnitude of the electric field. This condition is simpler to impose experimentally.

The effects of electric and magnetic fields acting on heterostructures containing
impurities have been discussed in numerous experimental and theoretical papers during
the last decade. For example, comprehensive summaries have been given by Santiagoet al
[1] and Shi et al [2] concentrating on SQW structures. Earlier, Greene and Bajaj [3, 4]
and Greene and Lane [5] used variational methods to study the effects of magnetic fields
whilst the same techniques were used later by Cen and Bajaj to consider the impurity states
in symmetric [6] and asymmetric [7] QWs subject to parallel electric and magnetic fields
directed perpendicular to the hetero-planes.

Figure 1. The schematic form of the potentialU(z) ' −e2/4πε0ε|z| − eEz, whereW(0)
1g,u

(from equation (3.8)) andW(0)
2,el (from equation (3.11)) are the first excited quasi-even (g) and

quasi-odd (u) quasi-Coulomb and ‘electric’ levels respectively. The electric fieldE and the
QW width d are chosen to provide resonance between the ground quasi-Coulomb levelW

(0)
0

(equation (3.7)) and ‘electric’ levelW(0)
1,el (equation (3.11)).1W01, given by equation (3.18), is

the resonance splitting of these levels.

Whilst the majority of papers describe results obtained using numerical techniques,
alternative analytical methods are also of much interest as they keep the basic physics of
the problem in view. Analytical work has been used by the current authors previously for
the problem of impurity states in a QW subject to a strong magnetic field [8, 9]. The effect
of parallel electric and strong magnetic fields on the impurity states in a QW has also been
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studied analytically [10, 11] assuming the QW to be narrow compared to the radius of the
impurity electron state. It was noted that these impurity states resemble size-quantized states
whilst the presence of the electric field removed inversion symmetry from the problem.

Very recently [12], the authors have extended the analytical method to the case in
which the impurity is located at the edge of the SQW. In such a case, the combined
potential acting on the electron resembles that of a double QW. It was shown that such a
system can be treated as if it is a resonance structure. In the present paper, the problem
of an impurity positioned anywhere between the mid-point and the edge of a SQW in the
presence of parallel electric and strong magnetic fields is developed. The fields are directed
perpendicular to the layers. As in reference [12], the width of the QW is taken to be greater
than the effective Bohr radius associated with the impurity electron, so the electron states
have a quasi-Coulomb character. This is because the combined potential governing the
impurity electron states in the SQW has the appearance of a DQW, as shown schematically
in figure 1. One part is formed from the one-dimensional Coulomb potential and the QW
boundary close to which the impurity is located and the other part is formed from the electric
field potential and the other boundary of the QW. The explicit dependencies of the energies
of the impurity electron upon the magnitudes of the magnetic and electric fields, the width
of the QW and position of the impurity are obtained.

The theory presented in this paper is a non-trivial extension of that given originally in
reference [12] for an impurity at the edge of a QW. The analysis presented focuses on the
resonance between the energy levels associated with the two effective wells. Tunnelling of
the electron through the barrier separating the effective wells becomes possible and anti-
crossing of the energy levels can occur. Simple analytical expressions for the resonance
splitting of the levels1W are derived. The gap between the resonance levels defines
the tunnelling timeπh̄/1W and results in an alteration in the spatial distribution of the
wave function. This in turn defines the kinetic and optical properties and particularly the
frequency of the radiationω = 1W/h̄ emitted by such semiconductor structures. Estimates
for the expected energy gap1W and for the frequencyω are made for GaAs QWs.

2. General theory

The underlying theory to be used here was developed originally in references [9], [10] and
[12]. It is based on the usual effective-mass approximation. Thez-axis is chosen to lie
along the direction of the parallel uniform magnetic (B) and electric (E) fields which are
perpendicular to the hetero-planes. The QW is modelled by an infinite square well of width
d. This analysis concentrates on the problem in which the impurity is positioned anywhere
between the edge and mid-point of the QW. The positions of the impurity and the mid-point
of the QW are taken to be the pointsz = 0 andz = b respectively (figure 1). We assume
further that the energy bands are non-degenerate and spherically symmetric with a parabolic
cross section.

In cylindrical coordinates, the effective-mass equation has the form(
1

2µ

(
−i h̄∇+ 1

2
e(B × r)

)2

− e2

4πε0ε
√
ρ2+ (z− b)2

)
9(ρ, z) = E9(ρ, z) (2.1)

whereε0 is the permittivity of free space,ε is the dielectric constant andµ and e are the
effective mass and charge of the carrier respectively. The energyE and wave function
ψ(ρ, z) can be found by solving this equation subject to the boundary conditions

9

(
ρ,±1

2
d

)
= 0. (2.2)
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The characteristic dimensionless parameters of the problem are the impurity radius
a0 (=4πh̄2εε0/µe

2), the magnetic lengthaB (=(h̄/eB)1/2) and the widthd of the QW.
In the limit of a strong magnetic field (for which the effect of the magnetic field on the
electron at a positionr(ρ, z) considerably exceeds that of the Coulomb field of the impurity
centre such thataB � a0), the motions of the electron along thez-direction and in thex–y
plane can be separated. Thus the solution to (2.1) may be written in the form

9N,m(r) = X⊥N,m(ρ)f (N,m)(z) (2.3)

where the functionX⊥N,m(ρ) describes the motion of the electron in the magnetic field in
the x–y plane. The labelsN andm are quantum numbers such thatN = 0, 1, 2, . . . and
m = 0,±1,±2, . . .. In order to simplify the calculations, we consider only the ground
transverse state for whichN = m = 0 which is given by the functionX⊥0,0(ρ) = χ⊥(ρ),
although the results obtained below are valid qualitatively for any transverse state.

It has been found [8, 9] that the levels of lowest energy associated with the longitudinal
motion have a quasi-Coulomb character for a wide quantum well. These levels are affected
strongly by external fields whilst the highest-energy size-quantized levels depend only
weakly upon both the magnitudes of the fields and the impurity potential. Further, we
consider the quasi-Coulomb states having longitudinal energiesW < 0.

The longitudinal functionfλ(u) of energyEλ, for the case in which the electric field is
directed along the negativez-direction, satisfies the equation [12]

d2fλ(u)

du2 +
(
λ〈0|(u2+ g2)−1/2|0〉 + λ

3

8
su− 1

4

)
fλ(u) = 0 (2.4)

where〈0| · · · |0〉 is an average with respect to the functionχ⊥(ρ). Also,

u = 2z/a0λ g = 2ρ/a0λ Wλ = −R/2λ2 (2.5)

whereR = e2/4πε0εa0 is the impurity Rydberg constant. The quantum numberλ labels
the states of the motion along thez-axis as in reference [12]. The other parameter relevant
to the calculation is the dimensionless electric fields (which is the electric fieldE scaled
relative to the impurity electric field). It is defined [12] by

s = 2E

e/(4πε0εa
2
0)
. (2.6)

The boundary conditions corresponding to the right-hand and left-hand edges of the QW
respectively have the form

f [(d/a0λ)(2b/d ± 1)] = 0. (2.7)

The analysis of equation (2.4) will be based upon the Hasegawa–Howard method [13]
together with a comparison equation [14]. Our approach to the problem is to consider the
solution to equation (2.4) for the three regions in turn and match them at the boundaries.

2.1. Matching the three regions

2.1.1. The region containing the impurity.Following the approach developed in references
[8] and [12] under the condition

|u| � 〈0|g|0〉 ∼ 2aB/a0λ0 (2.8)

the general solution to equation (2.4) is, to a first approximation (for whichs = 0),

fλ(u) = A±Wλ,1/2(|u|)+ B±Mλ,1/2(|u|) (2.9)
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whereWλ,1/2 andMλ,1/2 are Whittaker functions. Also,A± andB± are constants relevant
to the regionsu > 0 andu < 0 respectively.

In the region|u| � 1, an iteration method is performed by the double integration of
(2.4) using the trial function

f
(0)
λ (u) = c± + α±|u|(u2+ g2)1/2 ln[|u| + (u2+ g2)1/2]. (2.10)

The constantsc± and α± correspond to the regionsu > 0 andu < 0 respectively. The
results of the integration for the region|u| � 〈0|g|0〉 and from the standard expansion of
the Whittaker functions involved in (2.9) for|u| � 1 (see, for example, Gradshteyn and
Ryzhik [15]) are compared. When terms of the same order are equated, a set of four linear
equations are obtained. The continuity conditions applied to the functionf

(0)
λ (u) given in

(2.10) and its first derivative atu = 0 give the resultsc+ = c− andα+ = −α−.

2.1.2. The region adjacent to the right-hand boundary of the QW.A comparison equation
method [14] will be used. In this region, the effect of the electric fieldE overcomes the
influence of the impurity centre, so the comparison equation in place of (2.4) is the equation
for the Airy functions Ai and Bi [16]. The general solution to this equation can be written
in the form

fλ(u) = J Ai(−η)+K Bi(−η) (2.11)

whereJ andK are constants. Also,

η(u)3/2 = 3

2

∫ u

t1

q(t) dt for η > 0 (2.12)

and

|η(u)|3/2 = −3

2

∫ u

t1

|q(t)| dt for η < 0 (2.13)

where

q(t) = [λ/t − 1
4 + (λ3/8)st ]1/2 (2.14)

and wheret1 is the greater root of the equationq(t1) = 0.

2.1.3. The intermediate region.Within the region defined byu� 1 and(λ3/8)su� λ/u

and under the conditionsλ4 � 1, the functions (2.9) and (2.11) can be matched. A
comparison of the expression given in equation (2.9) foru� 1 [15] and that obtained from
equation (2.11) for the asymptotic regionη < 0 with |η| � 1 [16] is then made. When
terms of the same form are equated, a set of two linear equations is obtained.

2.2. An analysis of the set of equations

The set of six linear algebraic equations above for the coefficientsA±, B±, c±, α±, K andJ
together with the boundary conditions (2.7) and the requirementsc+ = c− andα+ = −α−
are solved by the determinantal procedure. This gives a transcendental equation in the form{
− W

Mλ02(−λ)
[
ϕ + 1

2
ξ − |Q|

]
+ 1

λ03(−λ) [ϕ + ξ ][ϕ − 2|Q|]
}

Ai(−η1)

+1

2
e−28 Bi(−η1)

{
1

0(−λ)
[
ϕ + 1

2
ξ − |Q|

]
− W
M

}
= 0. (2.15)
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In the above expression, the functionsϕ(λ), ξ(λ) and8(λ) are given by

ϕ(λ) = ψ(1− λ)+ 1/(2λ)+ 2C − 1 (2.16a)

ξ(λ) = 1− 1
2C + ln(γ /λ) (2.16b)

and

8(λ) = 2/[3sλ3] + λ ln(sλ3/8) (2.16c)

where γ = 21/2aB/a0 � 1, 0(x) is the gamma function,ψ(x) is the psi function (the
logarithmic derivative of the gamma function) andC is the Euler constant (=0.577). Also,
we define

Q(λ) = 2〈0|g ln g|0〉
λ〈0|g2|0〉 =

√
π

2γ

(
ln
γ

λ
+ 1− 1

2C

)
for Q(λ) < 0 (2.17)

whereW ≡ Wλ,1/2(u2), M ≡ Mλ,1/2(u2) andu1,2 = (d/a0λ)(1± 2b/d). On solving equ-
ation (2.15), the quantum numberλ can be found which in turn determines the impurity
electron energyWλ.

Equation (2.15) is valid in the strong-magnetic-field region(γ � 1) and under the
conditionu2� γ /λ. The latter condition implies that the approach given here is applicable
only to cases in which the impurity is separated from the left-hand edge of the QW by a
distance greater than the magnetic lengthaB . Similarly, the conditionQ < 0 (see equation
(2.17)) is also valid for a sufficiently strong magnetic field. In parallel with these restrictions,
equation (2.15) remains valid over large regions within the wide QW of widthd and the
impurity centre positionb and in cases in which the electric fieldE is less than the impurity
electric field.

As expected, equation (2.15) satisfies the limiting case of zero electric field. Setting
E = 0 in (2.15) and using asymptotic expressions [16] for the Airy functions Ai(−η1)

and Bi(−η1) for large values of|η1| � 1 with η1 < 0 we find that the equation for the
quantum numbersλ coincides with that obtained previously for the quantum numbers of
a diamagnetic impurity centre positioned anywhere in the QW and in the absence of an
electric field [8].

3. Results

As stated previously, the main aim of this approach is to investigate resonances between
states formed within the two effective potential wells formed by the Coulomb impurity
potential and the left-hand boundary of the QW, and by the uniform electric fieldE and
the right-hand boundary of the QW. They contain Coulomb and so-called ‘electric’ levels
respectively as given by the first and second factors in the first term in the left-hand part of
equation (2.15). The last term in the left-hand part of this equation describes the tunnelling
of an electron from the impurity well towards the triangular well close to the right-hand
boundary through the potential barrier which has a power [12]8� 1.

3.1. The zeroth approximation

3.1.1. The quasi-Coulomb states.Neglecting the tunnelling term as an approximation,
equation (2.12) decomposes into the two independent equations

1

0(−λ)(ϕ + ξ)(ϕ − 2|Q|)− W
M

(
ϕ − |Q| + 1

2
ξ

)
= 0 (3.1a)
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and

Ai(−η1) = 0 (3.1b)

which arise from the two effective wells. Equation (3.1) describes the ground and first
excited impurity levels in the quasi-Coulomb well adjacent to the left-hand boundary. In
the absence of the electric field and when the impurity centre is situated at the centre of
the QW or at any position within a bulk semiconductor, the electron states have a definite
parity [8, 9]. However, the classification of the energy levels into two groups can be made
for the impurity centre at any position in the well; all states are referred to as quasi-even
or quasi-odd states. To simplify the explicit expressions for the energy levels, we assume
that the effect of the strong magnetic field on the one-dimensional Coulomb states is larger
than that of the finite width of the QW. The relevant conditions will be given below. For
the wide QW (d � a0) the asymptotic expansion [15] of the Whittaker functions atu2� 1
will be used.

(a) The quasi-even states.It follows from (3.1) that, in this case, the equation for the
quasi-even states can be written in the form

ϕ = −ξ − 1
2λ0

2(−λ)Gλ (3.2)

whereGλ = exp(−u2 + 2λ ln u2) � 1. The quantum numberλ for quasi-even states is
given byλng = n + δng wheren = 0, 1, 2, . . . and whereδng < 1. For the ground level
(n = 0) on usingλ02(−λ) = δ−1

0 and in the logarithmic approximation (γ � 1, |ln γ | � 1)
we obtain from (3.2)

δ0 = (−2 lnγ − C)−1(1+Gλ). (3.3)

For the excited states(n = 1, 2, . . .) and usingλ02(−λ) = n(n!)−2(δng)
−2 we have

δng = −[ln(γ /n)+ 3C/2+ 1/(2n)+ ψ(n)]−1+ (n/2(n!)2)Gn. (3.4)

(b) The quasi-odd states.It follows from (3.1) that the equation for the quasi-odd states
can be written in the form

ϕ = 2|Q| − 1
2λ0

2(−λ)Gλ. (3.5)

The quasi-odd states have a quantum numberλ given byλn,u = n+δnu, wheren = 1, 2, . . .
and whereδnu < 1. Similarly, as in the case of the quasi-even states, on solving equation
(3.5) we have

δnu = (2|Q| − ψ(n)− 2C + 1− 1/(2n))−1+ (n/2(n!)2)Gn. (3.6)

The expressions (3.3), (3.4) and (3.6) are valid under the condition

G2
λλ

204(−λ)γ 2 ln−2 γ � 1.

Thus the impurity levels consist of the non-degenerate ground level (n = 0) and excited
levels (n = 1, 2, . . .) having a doublet structure consisting of quasi-even and quasi-odd
components.

(c) The impurity Stark effect.The effect of the electric field directed parallel to a strong
magnetic field on the quasi-Coulomb states was considered in references [17] and [18]. For
the ground level (n = 0) the electric field leads to a decrease in energy∼E2, so

2
W

(0)
0

R
= − 1

δ2
0

(
1+ 5

16
s2δ6

0

)
(3.7)
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whereδ0 is given by (3.3). The expressions for the excited states will be given below for
the case in which the splitting of the doublet by the electric field exceeds the initial splitting
in the case forE = 0. Thus

2W(0)
λ

R
= − 1

λ2
ng,u

(
1∓ 3

2
sλ4

ng,u

)
. (3.8)

The negative and positive signs inside the bracket correspond to the quasi-even and quasi-
odd components respectively.

3.1.2. The ‘electric’ levels. The second of equations (3.1) describes the ground and nearest
so-called ‘electric’ levels in the triangular well adjacent to the right-hand boundary of the
QW. The solution to this equation has the form [16]η1 = αk, k = 1, 2, 3, . . ., where
α1 = 2.34, α2 = 4.09, α3 = 5.52, α4 = 6.79, . . ., for example. Under the condition
sλ4 � 1 and using expressions (2.12) and (2.13), the parameterη1 can be written in the
following explicit forms: forx > 0,

η1 = p[1− 2sλ4x−3/2(x1/2− tan−1x1/2)] (3.9)

where

p = νs1/3x

1+ x x = νsλ2

1− 2sλ4
− 1

and where

ν = d

2a0

(
1+ 2

b

d

)
and, forx < 0,

η1 = −|p|
[

1+ 2sλ4y−3/2

(
y1/2+ 1

2
ln

1− y1/2

1+ y1/2

)]
(3.10)

wherey = −x.
The quantum numbersλk and the ‘electric’ energy levelsW(0)

k can then be written in
the explicit form

2
W

(0)
k

R
= −1/λ2

k = −
1

2
(νs − αks2/3)−

√
1

4
(νs − αks2/3)

2+ 8

3
s. (3.11)

The last term under the square-root sign describes the effect of the one-dimensional Coulomb
field on the levels in the triangular well.

Thus, in the zeroth approximation, the system of energy levels is the sum of two
independent series of energies. The first seriesW

(0)
λ are the quasi-Coulomb levels (3.7) and

(3.8) also influenced by the electric fieldE. The second series is formed by the ‘electric’
levelsW(0)

k as given by (3.11). The electron having an energyW
(0)
λ is localized within

the impurity well whilst the electron having energyW(0)
k is localized within the triangular

well close to the right-hand boundary of the QW. For a sufficiently weak electric fieldE,
the group of the ‘electric’ levels has energy greater than the quasi-Coulomb group, so the
relevant states are not in resonance.



Coherent resonant tunnelling in an impurity quantum well 1317

Figure 2. The dimensionless energy 2W/R plotted as a function of the dimensionless electric
field s (solid lines). The dashed lines display the independent ground ‘electric’ level (λ1,el ,
equation (3.11)) and ground (λ0, equation (3.7)) and first excited quasi-even (λ1g) and quasi-odd
(λ1u) quasi-Coulomb levels (equation (3.8)). The relevant resonance fieldssnk and the resonance
splitting of the ground quasi-Coulomb and ‘electric’ levels, where101 is defined by (3.15), are
indicated.

3.1.3. The resonant electric fields.If the electric field increases in magnitude, the ‘electric’
levels move toward lower energy values. Under the conditiond/a0 � 1, the red shift
(∼−sd/a0) of the ‘electric’ levels is larger than the shift (∼−3n2s/2) of the components
of the excited quasi-Coulomb levels. In turn, this exceeds significantly the red shift
(∼5s2δ4

0/16) of the ground level. Consequently, these two groups of levels can become
equal to one another. Under the conditionW(0)

λ = W(0)
k , the relevant quasi-Coulomb and

‘electric’ levels appear to be in resonance. On using this condition, the magnitudessnk
of the electric field at resonance can be found. These define the cases in which thenth
quasi-Coulomb level and thekth ‘electric’ level are in resonance. The dependencies of
the quasi-Coulomb energy levelsW(0)

λ given in equations (3.7) and (3.8) and the ‘electric’
energy levelsW(0)

k in (3.11) upon the magnitude of the electric fields are displayed in
figure 2.

On using the resonance condition for the ground impurity levelλ = δ0, whereδ0 is
defined by (3.3), the resonance fieldss0k are given by

s0k = 1

δ2
0ν
+ αk

δ
4/3
0 ν5/3

− 8

3ν2
. (3.12)

For the excited states (n = 1, 2, . . .) the expressions for the resonance fields can be written
in the form

s
(g,u)
nk =

1

λ2
ng,uν

+ αk

λ
4/3
ng,uν5/3

− 8/3± 9/3

ν2
(3.13)

where the quantum numbersλg,u = n+ δng,u are given by (3.4) and (3.6).
It is seen from figure 1 that, as the impurity centre shifts towards the right-hand boundary

of the QW, the parametersb and ν decrease. As a consequence, the resonance fieldssnk
given by equations (3.12) and (3.13) increase. In turn, the magnitude of the electric field is
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limited by the conditionsλ4� 1. We thus obtain the result 2|b|/d � 1− 2a0λ
2/d, which

implies that the above results are applicable for the cases where the impurity is separated
from the right-hand edge of the QW by a distance greater than the impurity radiusa0.

3.2. The first approximation

In a first approximation, the last term in the left-hand part of equation (2.12) is taken into
account. We expand the Airy functions Ai(−η1) and the first factor in the first term in (2.15)
in a power series inλ − λk andλ − λn respectively, whereλk andλn are obtained in the
zeroth approximation. Also we use the explicit expressions forη1(λ), ϕ(λ), ξ(λ) andQ(λ)
from (3.9), (2.16) and (2.17). On substituting the resulting expansions into equation (2.15)
and using both equations (3.1), we arrive at a quadratic equation for the quantum number
λ. The roots of this equation can be written in the form

λ(1,2) = 1
2(λn + λk)± [ 1

4(λn − λk)2+12
nk(s)]

1/2 (3.14)

where

1nk(s) = β1/2
nk s

1/3e−8(s) (3.15)

with

β0k = −Bi(−αk)[(2|Q| + ξ)− δ−1
0 Gλ]λ3

kδ0

4 Ai′(−αk)(2|Q| + ξ) (3.16)

and

βnk = −Bi(−αk)[2|Q| + ξ − n(n!)−2δ−2
n Gλ]λ3

kn

8 Ai′(−αk)(2|Q| + ξ)n!2
. (3.17)

The δn are defined by the expressions (3.3), (3.4) and (3.6) for the quasi-even or quasi-odd
components respectively.

Equation (3.14) describes the effect of anti-crossing of the energy levels which are
derived from a state which was originally located in different parts of the effective potential.
It follows from (3.14) that, if the electric fields and the resonance valuesnk are far apart,
and hence1

4(λn − λk)2 � 12
nk(s), the quantum numbers are close to those obtained in the

zeroth approximation, namelyλ(1) ∼= λn andλ(2) ∼= λk. In the case of resonance for which
s = snk andλn = λk ≡ λnk, it is found thatλ(1,2) = λnk ±1nk(snk).

At resonance, the differences between the quantum numbersλ(1) and λ(2) and their
associated energiesWλ(1) −Wλ(2) = 1Wnk are given by

λ(1) − λ(2) = 21nk(snk) and 1Wnk = 2R1nk(snk)/λ
3
nk. (3.18)

Thus if resonance between the quasi-Coulomb levels (3.7) and (3.8) and the ‘electric’ levels
(3.11) occurs, any crossing occurring in the zeroth approximation turns into anti-crossing
in the first approximation.

4. Discussion

The basic physics associated with the electron states has been kept in view in the above
analysis. As the effect of the magnetic field and the width of the QW on the impurity energy
levels had been studied in detail previously [3–5, 8, 9], we have concentrated here on the
influence of the electric fieldE on the electron states. If the effects of the applied electric
field s and the resonance fieldssnk are very different in magnitude, the system of energy
levels is the sum of independent quasi-Coulomb (3.7), (3.8) and ‘electric’ (3.11) levels.
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The wave function is concentrated within either the impurity well or the triangular well
close to the left- or right-hand boundary of the QW respectively. In the case of resonance
for which s ∼= snk, the nth quasi-Coulomb andkth ‘electric’ states become very close in
energy. The relevant gap is defined by (3.18). On ignoring possible relaxation processes,
coherent resonant tunnelling between the impurity and triangular wells becomes possible.
As a result, a drastic redistribution of the wave function and consequent emission of high-
frequency coherent radiation occurs. The wave functions related to the components of the
energy doublet attain a twin-peaks configuration. Calculations of the wave functions call
for specific consideration. The energy level pattern as a function of the magnitude of the
electric field is shown in figure 2.

Figure 3. The dependence of the resonance gap101 (equation (3.15)) between the ground
quasi-Coulomb (n = 0) and ‘electric’ (k = 1) levels upon the displacementb of the impurity
from the mid-point of the QW. The other parameters are given byd/a0 = 6, aB/a0 = 0.4,
δ0 = 0.52 andβ01 = 0.01.

It is clear from equations (3.15) and (2.13) that the resonance gap1nk increases as the
resonance fieldsnk increases. Expressions (3.12) and (3.13) enable the dependence of the
resonance fieldsnk on the ‘electric’ (k) and quasi-Coulomb (n) indexes, on the width of the
QW d and on the position of the impurity centreb to be obtained. It follows that, for a
fixed index of the quasi-Coulomb leveln, the resonance fieldsnk increases as a function
of the index of the ‘electric’ levelk. Meanwhile, for a fixed indexk, the resonance field
snk decreases with increasing indexn. The wider the QW, the smaller the resonance field
snk. The shift of the impurity centre towards the right-hand boundary (b decreases) leads
to an increase in magnitude of the resonance fieldsnk. Figure 3 shows the dependence of
the resonance gap between the ground quasi-Coulomb and ‘electric’ levels as function of
the position of the impurity.

From the approach described above, the dependencies of the energyWλ of the
longitudinal motion of the impurity electron on the magnitudes of the magnetic and electric
fields, on the width of the QW and on the position of the impurity have been obtained. It
follows from (3.3), (3.4) and (3.6) that, if the magnetic field increases in magnitude, then
the energyWλ decreases. As the electric field increases, the energy of the ground state (3.7)
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decreases only slightly (∼s2). For the excited states (3.8), as the electric field increases the
energy of the quasi-even component increases (∼+s), while the energy of the quasi-odd
component decreases (∼−s). As the width of the QW decreases and the impurity centre
shifts away from the mid-point, the energyWλ increases in each case.

A comparison of our analytical results with those obtained by numerical methods would
be desirable at this point. Cen and Bajaj [6] have extended the variational approach [3, 4]
to the calculation of the binding energy of the impurity electron in a ‘dielectric’ QW (for
which the dielectric constant of the barrier material is much less than that of the well
material) for the case in which both the magnetic and electric fields are perpendicular to
the hetero-planes. As pointed out in reference [6], a difference between the values of the
dielectric constants has little effect, allowing a qualitative comparison between the results
to be made. For confined systems, the binding energyWb is given byWb = W0−Wλ where
Wλ is the energy of the impurity electron andW0 is the energy of the electron in the QW
containing no impurity centre. In the presence of an electric fieldE, the expression forW0

can be obtained from (3.11) atb = 0 by neglecting the last term under the square-root sign.
In the absence of an electric field, expressions for the energy levels in the QW are well
known. We thus have, for the ground state,

2Wb/R = q + δ2
0 + (5/16)s2δ4

0 (4.1)

where

q =
{
π2a2

0/d
2 for E = 0

−νs + α0s
2/3 for E 6= 0.

(4.2)

The dependencies of the binding energy upon the magnitude of the magnetic fieldB

and on the displacement of the impurityb are dominated by the termδ−2
0 in equation (4.1).

It follows from (3.3) and (3.2) that, if the magnetic field increases in magnitude, the binding
energy also increases. An impurity located at the mid-point of the QW(b = 0) produces
the largest binding energy. With increasing distance of the impurity from the centre towards
both the left (3.2) and right [8] boundaries of the QW, the binding energy decreases. These
results coincide with those obtained numerically by a variational approach [4, 6] and the
method of direct integration [19].

The first term∼d−2 in equation (4.1) contributes mostly to the dependence of the
binding energy upon the widthd of the QW with no electric field. Clearly, the narrowing
of the QW leads to an increase in the binding energy. In the presence of the electric field,
this dependence becomes more pronounced. These results are in agreement with those
found previously [3, 6]. Also, from (4.1) and (4.2), it follows that the binding energy of
the impurity centre when it is positioned close to the mid-point (2b/d < 1) of the wide
QW (d/a0 > 1) decreases if the electric field increases in magnitude. Good agreement is
found between our analytical calculations and the variational-type calculations presented in
reference [6].

Our results may be compared with those obtained for the problem of an impurity centre
in a quantum dot subjected also to a magnetic field. A similar set of results were obtained
in reference [20] for the binding energy as a function of the magnitude of the magnetic
field, the position of the impurity centre and the size of the quantum dot.

Recently, Caoet al [21] have calculated the excitonic states in a superlattice coupled to
an enlarged quantum well in the presence of an electric field. For the resonance electric field,
the energy levels in the quantum well and the Stark levels in the superlattice were shown
to anti-cross. Moreover, the pattern of the energy levels given in reference [21] correlates
well with that shown in figure 2. Consequently it is suggested that the anti-crossing of the
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resonance levels caused by the electric field is similar for various types of low-dimensional
structure.

Let us consider possible experiments. Suitable values for the parameters for the GaAs
QW are needed for the case of a strong magnetic field for a well in which the widthd � a0.
Thus we takeµ = 0.067m0, ε = 12.5 anda0 = 98.7 Å with B = 40 T andaB/a0 = 0.4.
A red shift of the ground impurity state(n = 0, λ0 = δ0 = 0.52, from reference [9])
1W

(0)
0 caused by the electric fieldE = 1200 kV m−1 may be found from (3.7) such that

1W
(0)
0 = 0.45 meV. The excited states are more sensitive to the effect of the electric field;

for example, for an electric fieldE = 30 kV m−1, the splitting of the first excited impurity
level (n = 1, λ1g,u = 1.42, from reference [9]) is1W(0)

1g,u = W
(0)
1g − W(0)

1u which gives

the result1W(0)
1g,u = 1.95 meV from (3.8). The resonance splitting of the ground quasi-

Coulomb and ‘electric’ levels1W01 (n = 0, k = 1, β01 = 0.01) is defined by (3.18), (3.15)
and (2.13) such that1W01 = 1.84 meV. This gap corresponds to a frequency of 0.44 THz
for the emitted radiation. The relevant resonance electric fieldE01 is equal to 710 kV m−1

(s01 = 1.23). These values are those typically found in experiments. The chosen electric
field E01 causes the penetration through the potential barrier to be relatively weak. This in
turn leads to the result that a wide QW width ofd = 600 Å is needed to demonstrate this
effect. When the QW becomes narrower, this value forE01 is exceeded, the penetration
increases and the above method of solving equation (2.12) becomes inappropriate. However,
clearly in the presence of a stronger electric field (s 6 2), the effect of the resonance splitting
holds for QWs of standard widthd ∼ (3–5)a0. In this case, a numerical approach should
be used.

5. Conclusions

We have developed an analytical method for solving the problem of an electron (hole)
captured by an impurity centre positioned anywhere between the mid-point and edge of
a single quantum well in the presence of strong magnetic and electric fields directed
perpendicular to the hetero-planes. It has been shown that the combined potential is similar
to that of a double quantum well. Resonance between the levels associated with different
wells occurs for specific values of the electric field and coherent tunnelling between the wells
becomes possible. The single QW considered above exemplifies this resonance structure.
The relevant resonance energy levels are found to anti-cross. The dependencies of the
impurity levels and their resonance splitting on the width of the well, the position of the
impurity and on the magnitudes of the electric and magnetic fields have been obtained. This
in turn defines the tunnelling time and the period of inter-well oscillations of the electron
and the frequency of the relevant emitted radiation. Estimates of the resonance gap and
the frequency of the emitted radiation for GaAs are shown to be in general agreement with
experimental values. The results obtained can be extended to QWs containing impurity
centres distributed throughout the width of the QW. The presence of these resonance states
markedly affects the optical spectra of semiconductor structures containing impurity-doped
QWs in the presence of magnetic and electric fields.
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